How Good Are Sparse Cutting-Planes?

نویسندگان

  • Santanu S. Dey
  • Marco Molinaro
  • Qianyi Wang
چکیده

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cuttingplanes? In order to understand this question better, given a polyope P (e.g. the integer hull of a MIP), let P be its best approximation using cuts with at most k non-zero coefficients. We consider d(P,P) = maxx∈Pk (miny∈P ‖x− y‖) as a measure of the quality of sparse cuts. In our first result, we present general upper bounds on d(P,P) which depend on the number of vertices in the polytope and exhibits three phases as k increases. Our bounds imply that if P has polynomially many vertices, using half sparsity already approximates it very well. Second, we present a lower bound on d(P,P) for random polytopes that show that the upper bounds are quite tight. Third, we show that for a class of hard packing IPs, sparse cutting-planes do not approximate the integer hull well. Finally, we show that using sparse cutting-planes in extended formulations is at least as good as using them in the original polyhedron, and give an example where the former is actually much better.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating polyhedra with sparse inequalities

In this paper, we study how well one can approximate arbitrary polytopes using sparse inequalities. Our motivation comes from the use of sparse cutting-planes in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In ord...

متن کامل

Analysis of Sparse Cutting Planes for Sparse MILPs with Applications to Stochastic MILPs

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three types, assume that we decide on the suppo...

متن کامل

Analysis of Sparse Cutting-plane for Sparse IPs with Applications to Stochastic IPs

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three types, assume that we decide on the suppo...

متن کامل

Set covering algorithms using cutting planes, heuristics, and subgradient optimization : a computational study

We report on the implementation and computational testing of several versions of a set covering algorithm, based on the family of cutting planes from conditional bounds discussed in the companion paper [2]. The algorithm uses a set of heuristics to find prime covers, another set of heuristics to find feasible solutions to the dual linear program which are needed to generate cuts, and subgradien...

متن کامل

3D Reconstruction from Sparse Unorganized Cross Sections

In this thesis work, we propose an algorithm for smooth 3D object reconstruction from unorganized planar cross sections. We address the problem in its full generality, and show its effectiveness on sparse set of cutting planes. Our algorithm is based on construction of a globally consistent signed distance function over the cutting planes. It uses a divide-and-conquer approach utilizing Hermite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014